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Abstract

In this paper, we consider a class of explicit marching schemes first proposed in [1] for solving the wave equation in

complex geometry using an embedded Cartesian grid. These schemes rely on an integral evolution formula for which

the numerical domain of dependence adjusts automatically to contain the true domain of dependence. Here, we refine

and analyze a subclass of such schemes, which satisfy a condition we refer to as strong u-consistency. This requires that
the evolution scheme be exact for a single-valued approximation to the solution at the previous time steps. We provide

evidence that many of these strongly u-consistent schemes are stable and converge at very high order even in the

presence of small cells in the grid, while taking time steps dictated by the uniform grid spacing.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The solution of the wave equation in complex geometry has important applications in electromagnetics,

acoustics and a variety of other application areas. In some cases, frequency domain analysis is sufficient,
but in others, the solution is better studied in the time domain. Examples include the analysis of wide band

signals, transient behavior, and the treatment of material inhomogeneities and nonlinearities.

In solving the wave equation in complex geometry, Cartesian grids with embedded boundaries have a

number of advantages over body fitted grids; they allow for more efficient implementation as well as au-

tomatic grid generation. In complicated domains, however, it is inevitable that there will be small cells

where the Cartesian grid intersects the irregular boundary. Explicit finite difference schemes are then re-

stricted in the size of the time step they can take due to the CFL condition. For typical schemes with a fixed
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stencil, the size of the time step is usually dependent on the size of the smallest cell in the spatial discret-

ization [7,8]. We would like to overcome this restriction and allow time steps on the order of the size of the

uniform cells in the grid even when small cells are present near the boundary.

A necessary but not sufficient condition to ensure stability in the presence of small cells is to enlarge the

numerical domain of dependence to include the true domain of dependence of the PDE near the small cells.

There are numerous approaches to this �small cell� problem for conservation laws, mostly in two dimen-

sions. They include cell merging (see, e.g. [3,6]), large time step generalizations of Godunov�s method [5],

and the rotated grid h-box method [2]. Cell merging approaches remove small cells near the boundary and
tend to result in a loss of accuracy there. The other approaches keep the small cells in the grid and enlarge

the numerical domain of dependence near the small cells in some way. These approaches, however, were

developed for nonlinear conservation laws, where shock resolution is an essential feature and low order

accuracy is an acceptable option. For large-scale wave propagation problems, high accuracy is much more

critical to avoid numerical dispersion errors.

In [1], a class of explicit marching schemes was proposed to solve the wave equation which appeared to

be remarkably insensitive to the presence of small cells in the computational grid. This class of schemes was

derived from a new, exact, three time level evolution formula, which automatically incorporates the true
domain of dependence of the wave equation into the numerical domain of dependence of the scheme. While

a promising approach, we found that not all schemes of this type were stable, suggesting that a more

detailed analysis was required.

In this paper, we modify the evolution formula of [1] to account for discretization effects, particularly the

discontinuities found in piecewise polynomial approximations to the solution. We also show how to apply

the evolution formula to the case where there are multiple wave speeds in the problem. The main contri-

bution here is a paradigm for generating a large set of stable, high order, explicit marching schemes for the

wave equation which are robust in the presence of small cells in the computational grid. Contained in this
paradigm is a specification for generating the evolution stencil at all grid points, regardless of whether the

grid points are near small cells. We are not aware of any comparable procedure for generating stable,

explicit, and high order marching schemes based on finite difference or finite element discretizations.

This paper is organized as follows. Section 2 describes the evolution formula given in [1] and Section 3

introduces the idea of strong consistency of an evolution scheme. Sections 4 and 5 present specific classes of

such schemes which we refer to as strongly consistent and strongly u-consistent, respectively. Section 6

extends our approach to problems with abrupt changes in material properties, where multiple wave speeds

are present. Section 7 gives numerical results concerning the stability and accuracy and Section 8 contains
our conclusions.

It is important to note that the present paper is largely experimental. The schemes we believe to be stable

have been studied by matrix analysis for a broad range of grids; a direct proof has yet to be found.

2. Exact integral evolution formula

It was shown in [1] that if uðx; tÞ is a solution to the homogeneous wave equation

utt ¼ r2u ð1Þ

in Rd , then there exists a kernel Gdðjx� yj; sÞ such that

uðx; t þ sÞ ¼ 2uðx; tÞ � uðx; t � sÞ þ
Z
BsðxÞ

Gdðjx� yj; sÞr2uðy; tÞ dy; ð2Þ

where BsðxÞ ¼ fy; jy � xj6 sg denotes the closed ball in Rd of radius s centered at x. Moreover,
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G1ðr; sÞ ¼ s � r;

G2ðr; sÞ ¼
lnðs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � r2

p
Þ � ln r

p
;

G3ðr; sÞ ¼
1

2pr
:

Remark 2.1. If uðx; tÞ is a periodic function on some box in Rd , the formula (2) still holds, with the

Laplacian term r2u interpreted in the periodic sense.

Suppose now that we want to solve the wave equation (1) in a finite domain D subject to Dirichlet

conditions uðx; tÞ ¼ gðx; tÞ on the boundary oD. We can modify the formula (2) by restricting the region of

integration. We define ~uuðx; t þ sÞ by

~uuðx; t þ sÞ � 2uðx; tÞ � uðx; t � sÞ þ
Z
BsðxÞ\D

Gdðjx� yj; sÞr2uðy; tÞ dy: ð3Þ

It is easy to verify that ~uu satisfies the wave equation for s > 0 and that

Wðx; t þ sÞ � uðx; t þ sÞ � ~uuðx; t þ sÞ; x 2 D

takes on zero initial data. At the boundary, however, we must have

Wðx; t þ sÞ ¼ gðx; t þ sÞ � ~uuðx; t þ sÞ; x 2 oD: ð4Þ

The wave equation for W can be solved using hyperbolic potential theory [4]. For short times s, this involves
a local boundary integral for which the cost is negligible. In one space dimension, the solution is available

analytically; assuming that x > a, where a is the left boundary point, an elementary calculation [4] shows

that

Wðx; t þ sÞ ¼ 0 if x� aP s;
gða; t þ s � xþ aÞ � ~uuða; t þ s � xþ aÞ if x� a6 s:

�
ð5Þ

(On the interval ½a; b�, a similar formula applies near the right boundary point x ¼ b.)

Definition 2.1. We refer to the function Wðx; t þ sÞ as the boundary correction term.

Our numerical approach to solving the wave equation (1) is straightforward. For problems in free-space

or with periodic boundary conditions, we discretize (2) for a time step s ¼ Dt and use the result as a three

time level scheme. In the presence of boundaries, we discretize (3), add the boundary correction term

Wðx; t þ sÞ, and use that result to march forward in time.

Remark 2.2. For the sake of simplicity, we assume uðx; 0Þ and uðx;DtÞ are given, ignoring ‘‘startup issues’’

for the three level scheme.

In the present paper, we will limit our attention to periodic and Dirichlet boundary conditions in one

space dimension on a interval ½a; b�. For this, we introduce a simple computational mesh x1 ¼
a; x2; . . . ; xM�1; xM ¼ b. For the sake of simplicity, the mesh is equispaced with the possible exception of

the first and last subintervals; i.e., x3 � x2 ¼ x4 � x3 ¼ � � � ¼ xM�1 � xM�2, but x2 � x1 and xM � xM�1 are
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arbitrary (see Figs. 1 and 2). This is a reasonable model for higher dimensional problems, where a uniform

Cartesian mesh is superimposed on a complex region, creating small cells in the vicinity of the boundary.

Definition 2.2. We will denote by Un
i the value of the approximate solution at the grid point xi at time

tn ¼ nDt.

In [1], the following approach was proposed.

Algorithm

1. From the current data Un
i , compute a discrete approximation of the Laplacian r2Un

i .

2. From the discrete Laplacian data r2Un
i , compute a piecewise polynomial interpolant r2Uðx; tnÞ.

3. Replace r2uðy; tÞ in the formula (3) with r2Uðy; tÞ.
4. Integrate the resulting formula analytically for a time step s ¼ Dt. This is straightforward for piece-

wise polynomial data:

Unþ1
i :¼ 2Un

i � Un�1
i þ

Z
BsðxÞ\D

Gdðjx� yj; sÞr2Uðy; tnÞ dy:

5. For Dirichlet problems, add the boundary correction using (5).

Unþ1
i :¼ Unþ1

i þ Wðxi; tnþ1Þ:

6. Repeat.

Fig. 1. An irregular computational grid for Dirichlet problems. While most points are equispaced, the first grid point x2 is near the

physical boundary. For that point, the thick horizontal dashed line indicates the range of integration in (3). (Only the grid near the left

boundary is shown.)

Fig. 2. An irregular computational grid for periodic problems. While most points are equispaced, the first grid point is arbitrarily close

to the periodic boundary. For that point, the thick horizontal dashed line indicates the range of integration in (3). (Only the grid near

the left boundary is shown and xMþ1 is identified with x1.)
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Numerical experiments suggested that this approach can lead to fourth-order accurate schemes which

are robust and stable even in the presence of small cells. However, higher order stable schemes were difficult

to obtain. This led us to investigate evolution schemes for which a polynomial approximation is made to Un
i

directly, rather than to the discrete Laplacian r2Un
i . This appears to allow for higher order accuracy while

maintaining stability.

3. Strongly consistent evolution schemes

Before proceeding, it is worth reconsidering finite difference schemes for the wave equation from a

somewhat non-standard viewpoint. Classical analysis is based on the notions of stability and consis-

tency, and does not pay attention to the following simple question: is there an underlying single-valued

function u for which the marching scheme can be interpreted as an evolution process? It turns out the

answer is no—the reader will easily verify that a moving finite difference stencil corresponds to a

multiple-valued interpretation of both r2uðx; tnÞ and uðx; tnÞ. This leads us to introduce the following

definitions.

Definition 3.1. A numerical scheme based on the integral evolution formula (3) is strongly consistent if it
incorporates a function r2uðx; tnÞ which is single valued in the entire domain.

Definition 3.2. A numerical scheme based on the integral evolution formula (3) is strongly u-consistent
if it incorporates functions uðx; tnÞ and uðx; tn�1Þ, both of which are single valued in the entire

domain.

Remark 3.1. The approach in [1] described above yields strongly consistent, but not strongly u-consistent
schemes.

We will use Uðx; tnÞ to denote a single-valued function, defined in all of D, which approximates the

discrete data Un
i ; i ¼ 1; . . . ;M � 1. In each cell (subinterval) of the Cartesian grid, we represent Uðx; tnÞ as a

polynomial. This polynomial is obtained by fitting, in a least squares sense, a subset of the current data
points Un

i using grid points in or near that cell. More precisely, let D ¼ ½a; b� and let the spatial grid be

fa ¼ x1; . . . ; xM ¼ bg. A cell is an interval ½xi; xiþ1�; i ¼ 1; . . . ;M � 1, and we denote the polynomial ap-

proximation on the interval ½xi; xiþ1� by Uiðx; tnÞ. Expressions like Ui
xðxi; tnÞ, Ui

xxðxi; tnÞ, Ui
xðxiþ1; tnÞ,

Ui
xxðxiþ1; tnÞ, which will appear later, are used to denote the (one-sided) first and second derivatives of

Uiðx; tnÞ at the interval boundaries x ¼ xi; xiþ1.

We now define a scheme Sp
m according to the order p of the piecewise polynomial approximation in

each cell and the number of points p þ 1þ m used to obtain a least squares fit. The polynomial Uiðx; tnÞ
is obtained by fitting the values of Un

i�il
; . . . ;Un

i ;U
n
iþ1; . . . ;U

n
iþ1þir

, where il þ 2þ ir ¼ p þ 1þ m. The
number of points to the left of the cell is il ¼ maxðbðp þ 1þ m� 2Þ=2c; iÞ. The number of points to

the right of the cell is ir ¼ p þ 1þ m� 2� il if ir 6M ; otherwise, we set ir ¼ M � i� 1. In short, the

points used to obtain a least squares fit are as symmetric as possible around the interval ½xi; xiþ1�
without leaving the domain. If p þ 1þ m is even, the stencil is symmetric away from the boundary.

Otherwise, the stencil is non-symmetric. We say that a scheme is interpolatory if m ¼ 0, because

then Uðx; tnÞ interpolates all data points exactly. If mP 1, we refer to the scheme as a least squares
scheme.

When Uðx; tnÞ is obtained by a least squares scheme, it is discontinuous, and we define the value at the
grid points themselves as the average of the one-sided limits. In this case, Uxðx; tnÞ is a generalized function

which we consider in more detail in Section 5.
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4. Strong consistency

Given the function approximation Uðx; tnÞ in the preceding section, we can ignore discontinuities at

interval boundaries and define r2Uðx; tnÞ as the piecewise smooth function defined by

r2UPSðx; tnÞ ¼ Ui
xxðx; tnÞ for x 2 ðxi; xiþ1Þ: ð6Þ

This function is obviously single valued in the entire domain ½a; b�. A scheme Sp
m using (6) to compute the

integral in (3), with any choice of Dt and spatial discretization, is strongly consistent according to Definition

3.1. Recall that in each cell, the convolution integral in (3) can be computed exactly for polynomials. Thus,

the accuracy of the evolution scheme depends only on the order p of the piecewise polynomial approxi-

mation.

Such a scheme is not strongly u-consistent because the function Uðx; tnÞ and its derivatives may have

discontinuities across the boundaries between cells which are not taken into account. In other words, the

expression in (6) is not the actual Laplacian of Uðx; tnÞ in the sense of generalized functions.

5. Strong u-consistency

In this section, we modify the formula in (3) to account for the piecewise smooth nature of Uðx; tnÞ in
order to satisfy the more stringent requirement of strong u-consistency.

The region of integration for the convolution integral in (3), namely BDt \D, encompasses the

boundaries of several cells. On these boundaries, Uðx; tnÞ may have jump discontinuities, which lead to
Dirac d-function singularities in its first derivatives and d0 singularities in its Laplacian. Similarly, the

first derivatives of Uðx; tnÞ will have jump discontinuities which lead to additional d singularities in the

Laplacian.

One could, of course, avoid discontinuities by enforcing the condition that Uðx; tnÞ 2 C2ðDÞ. Since it is

impractical to enforce such a condition in two and three dimensions, we make no effort in this paper to do

so. The present one-dimensional analysis then serves as a more realistic model. The analytical derivative of

Uðx; tnÞ contains jumps at interior grid points of the form

Jxi
Uðx;tnÞdðx� xiÞ; where Jxi

Uðx;tnÞ ¼ Ui
xðxi; tnÞ � Ui�1

x ðxi; tnÞ: ð7Þ

The analytical second derivative of Uðx; tnÞ, i.e., r2Uðx; tnÞ contains discontinuities of the form

Jxi
Uðx;tnÞd

0ðx� xiÞ þ Jxi
Uxðx;tnÞdðx� xiÞ; ð8Þ

where Jxi
Uxðx;tnÞ ¼ Ui

xðxi; tnÞ � Ui�1
x ðxi; tnÞ is the magnitude of the discontinuity of the piecewise polynomial

part of Uxðx; tnÞ at xi.
In summary, we define

r2Uðx; tnÞ ¼ r2UPSðx; tnÞ þ
XM�1

i¼1

Jxi
Uðx;tnÞd

0ðx� xiÞ þ Jxi
Uxðx;tnÞdðx� xiÞ: ð9Þ

It remains only to compute the effect of the singular terms on the integral in (3). If we let

y0 ¼ maxða; xi � DtÞ and yf ¼ minðb; xi þ DtÞ, then the contribution from a d-function discontinuity isZ yf

y0

ðDt � jxi � yjÞJ z
Uxðx;tnÞdðy � zÞ dy ¼ 0 if z 62 ½y0; yf �;

ðDt � jxi � zjÞJ z
Uxðx;tnÞ otherwise:

�
ð10Þ
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The magnitude of this quantity is OðDtJUxðx;tnÞÞ. Note that this is extremely small since JUxðx;tnÞ is at most of

the order ðDxÞp, where p is the degree of the piecewise polynomial Uðx; tnÞ.
Similarly, the contribution to (3) due to a discontinuity of Uðx; tnÞ at the point z isZ yf

y0

ðDt � jxi � yjÞJ z
Uðx;tnÞd

0ðy � zÞ dy

¼ ðDt � jxi � yjÞJ z
Uðx;tnÞdðy � zÞ

���yf
y0
�
Z yf

y0

ðDt � jxi � yjÞyJ z
Uðx;tnÞdðy � zÞ dy

¼ 0 if z 62 ½y0; yf �;

¼ J z
Uðx;tnÞ �

�0:5 if z ¼ xi � Dt;

�1 if xi � Dt < z < xi;

0 if z ¼ 0;

1 if xi < z < xi þ Dt;

0:5 if z ¼ xi þ Dt;

8>>>>>><
>>>>>>:

if z 2 ½y0; yf �:

8>>>>>>>><
>>>>>>>>:

ð11Þ

The magnitude of this quantity is at most of the order OðJUðx;tnÞÞ ¼ OððDxÞpþ1Þ. If Dt ¼ OðDxÞ, this quantity
has the same order of magnitude as the integral in (10). These are extremely small corrections, but they have

a remarkable impact on stability.

6. Multiple wave speeds

The integral evolution formula can be applied to problems with multiple wave speeds. We illustrate with

the following example in which there are two wave speeds present, c1 and c2:

uttðx; tÞ ¼ c21uxxðx; tÞ; x < 0; ð12Þ

uttðx; tÞ ¼ c22uxxðx; tÞ; x > 0: ð13Þ

We assume that the solution is continuous and differentiable at the interface x ¼ 0:

lim
x!0�

uðx; tÞ ¼ lim
x!0þ

uðx; tÞ :¼ uð0; tÞ; ð14Þ

lim
x!0�

uxðx; tÞ ¼ lim
x!0þ

uxðx; tÞ :¼ uxð0; tÞ: ð15Þ

We now derive an exact formula analogous to (2) for the solution of 12–15. Suppose a solution uðx; tÞ
satisfying 12–15 is known for t6 0. We begin by defining two intermediate solutions. First, we define a

solution of equation (12) for the left half line,

u1ðx; t þ sÞ :¼
uðx; t þ sÞ; x6 0; s6 0;
2uðx; tÞ � uðx; t � sÞ

þ
Rminð0;xþc1sÞ
x�c1s

ðc1s � jy � xjÞr2uðy; tÞ dy; x6 0; s > 0:

8<
: ð16Þ

Similarly, we define a solution of (13) on the right half line,

u2ðx; t þ sÞ :¼
uðx; t þ sÞ; xP 0; s6 0;
2uðx; tÞ � uðx; t � sÞ

þ
R xþc2s
maxð0;x�c2sÞðc2s � jy � xjÞr2uðy; tÞ dy; xP 0; s > 0:

8<
: ð17Þ
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We could simply concatenate the two solutions by defining

uðx; tÞ :¼ u1ðx; tÞ; x < 0;
u2ðx; tÞ; x > 0:

�

This function satisfies the desired partial differential equation in each domain, but fails to satisfy the
continuity condition u 2 C1ð�1;1Þ at the origin. A straightforward application of potential theory [4]

yields the correct solution

uðx; t þ sÞ :¼
u1ðx; t þ sÞ � c1

c1þc2
aðs þ x

c1Þ �
c1c2
c1þc2

R sþ x
c1

0 bðsÞ ds x < 0;

u2ðx; t þ sÞ þ c2
c1þc2

aðs � x
c2Þ �

c1c2
c1þc2

R s� x
c2

0 bðsÞ ds x > 0;

8<
: ð18Þ

where

aðsÞ :¼ u1ð0; t þ sÞ � u2ð0; t þ sÞ; ð19Þ

bðsÞ :¼ o

ox
u1ð0; t þ sÞ � o

ox
u2ð0; t þ sÞ: ð20Þ

In order to obtain a numerical method based on the formula (18), we can use the algorithms described in

the preceding sections with a few simple modifications:

1. Use the formulas in (16) and (17)to evolve u1 and u2 separately for a time step at all grid points

xi.
2. Compute the correction terms in (18)from aðsÞ and bðsÞ, which can be derived analytically from u1 and

u2.
3. If solving a Dirichlet problem on a finite interval, such as ½�1; 1�, use boundary corrections W as de-

scribed in Section 2.

7. Numerical results

In this section, we provide numerical results concerning the accuracy and stability of a variety of schemes

based on the paradigm described above. The stability of a scheme is determined numerically by looking at
the spectral radius of its evolution matrix for a variety of grid sizes. The accuracy of a scheme is determined

by experiments using several test functions. We assume that the grid is uniform away from the boundary,

with uniform spatial discretization Dx except for irregular cells near the boundary of size E which may be

much smaller than Dx.
A scheme is denoted by Sp

fm;lgðrÞ if it fits function values by a polynomial of order p in each cell using

p þ 1þ m nearby grid points. If the domain contains small cells, p þ 1þ mþ l points are used to fit the

polynomial near the small cells to ensure that the interpolation process is not too ill-conditioned even if the

small cells are orders of magnitude smaller than Dx. If the grid is uniform, then the parameter l is not
invoked and the scheme can be denoted by Sp

mðrÞ. The time step and the spatial discretization are related by

Dt ¼ rDx. If there are two wave speeds in the problem domain, we allow the spatial discretization to be

different in the two regions. A scheme will be denoted by Sp
fm;lgðr1; r2Þ where Dx1 ¼ Dt=r1 and Dx2 ¼ Dt=r2

are the spatial discretizations in the two regions.

As noted earlier, if p þ 1þ m is even, the scheme is said to have a symmetric stencil; otherwise, it has a

non-symmetric stencil. If m ¼ 0, the scheme is interpolatory; otherwise, it is a least squares fit. It is strongly

consistent if it uses (6). It is strongly u-consistent if it uses (9).
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7.1. Periodic boundary conditions

We begin with the simplest case: periodic boundary conditions, which avoids the need for incorporating

boundary corrections. The test functions used to obtain convergence results are sinð2pðx� tÞÞ,
sinð4pðx� tÞÞ, and sinð6pðx� tÞÞ on the interval ½0; 1�. The spatial grid is fx1; x2; . . . ; xM�1; xMg, where the

point x1 is identified with the point xMþ1. We let the grid be uniform from x2 to xMþ1 with spacing Dx. The
irregular cell ½x1; x2� is of length E.

A simple calculation shows that, for uniform grids, the stencil generated by the strongly u-consistent
approach reduces to the exact ‘‘symmetric D�Alembert formula’’:

Unþ1
i ¼ �Un�1

i þ Un
i�1 þ Un

iþ1;

for any polynomial approximation order pP 2. The stencil in the strongly consistent approach reduces to

Unþ1
i ¼ �Un�1

i þ Un
i�1 þ Un

iþ1 þ Dt½Ui�1
x ðxi; tnÞ � Ui

xðxi; tnÞ�:

Thus, strong consistency deviates from the exact formula by �DtJ xi
Uxðx;tnÞ.

Table 1 shows the numerical convergence of the strongly consistent and strongly u-consistent schemes
Sp
0ð1Þ for p ¼ 2; . . . ; 9 on a uniform grid using the sine test functions by the usual von Neumann analysis.

Unstable schemes are denoted by �d�. Fig. 3 shows that for S8
0ð1Þ the incorporation of the discontinuities

of Uðx; tnÞ and Uðx; tn�1Þ into the evolution formula moves originally unstable eigenvalues onto the unit

circle.

Table 2 shows the numerical convergence of the schemes Sp
mðrÞ, r ¼ Dt=Dx ¼ f0:9; 1:1g, m ¼ f0; 1; 2g,

p ¼ f2; . . . ; 9g on a uniform grid. Without enforcing strong u-consistency, interpolatory schemes (m ¼ 0)

with symmetric stencils are stable, as are S2
1ð0:9Þ and S2

1ð1:1Þ. All others are unstable. By enforcing strong

u-consistency, all schemes with symmetric stencils are stable and converge at the expected orders. Fig. 4
illustrates how the eigenvalues of the schemes S8

1ð1:1Þ and S9
2ð1:1Þ are pushed into the unit circle by

enforcing strong u-consistency. They are no longer on the unit circle because the discrete evolution scheme

is no longer time-symmetric.

Table 3 shows the numerical convergence of the strongly u-consistent schemes Sp
fm;lgðrÞ, r ¼

f0:9; 1:0; 1:1g, m ¼ f0; . . . ; 3g, l ¼ f0; 1g, p ¼ f2; . . . ; 9g on a grid with an irregular cell. The irregular cell

sizes tested are E ¼ fDx; 0:1Dx; 10�6Dxg. The schemes marked as convergent are stable for all three ir-

regular cell sizes, while the schemes marked as unstable are unstable for at least one cell size. The scheme

S3
f3;0gð0:9Þ is not stable, whereas S3

f3;0gð1:1Þ is second-order accurate. In all other entries, there is no

difference between the behavior of r ¼ 0:9 and r ¼ 1:1. Overall, one can see again that symmetric stencils

are favored.

Table 1

Numerical convergence of interpolatory schemes Sp
0 ð1Þ on the interval ½0; 1� with periodic boundary conditions on a uniform grid of size

M ¼ f20; 40; 80; 100g

Convergence orders of schemes Sp
0 ð1Þ

p 2 3 4 5 6 7 8 9

Strongly consistent d 2 d 4 d 6 d 8

Strongly u-consistent exa exa exa exa exa exa exa exa

The exact solutions tested are sinð2pðx� tÞÞ, sinð4pðx� tÞÞ, and sinð6pðx� tÞÞ. The scheme Sp
mðrÞ uses the time step Dt ¼ rDx and a

piecewise polynomial approximation of degree p based on the nearest p þ 1þ m points. The table shows the convergence orders of

various schemes: �d� denotes that the scheme is unstable, �exa� denotes that the approximation is exact. The strongly u-consistent
schemes are exact for this model problem.
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7.2. Dirichlet boundary conditions

For the wave equation on ½a; b� subject to Dirichlet boundary conditions, the evolution formula with

boundary correction has been implemented. The test functions used to obtain numerical convergence re-

sults are left and right moving sine waves, polynomials, and exponentials on the interval ½0; 1�. The spatial
grid is fa ¼ x1; x2; . . . ; xM�1; xM ¼ bg. The size of the two irregular cells near the boundary is
E ¼ x2 � x1 ¼ xM � xM�1, and the size of the uniform cells is Dx ¼ xi � xi�1; i ¼ 3; . . . ;M � 1.

We have carried out standard matrix stability analysis for homogeneous boundary conditions numeri-

cally for a variety of grid sizes, and verified the convergence of strongly u-consistent schemes up to order 9

Fig. 3. Eigenvalues of the evolution matrix of the S8
0 ð1Þ schemes for the uniform periodic case. The circles and the stars denote the

stable and unstable eigenvalues of the strongly consistent scheme, respectively. The ‘‘�’’s denote the eigenvalues of the strongly

u-consistent scheme, all of which are stable. The unit circle is outlined in dots.

Table 2

Numerical convergence of schemes Sp
mðrÞ, r ¼ f0:9; 1:1g, m ¼ f0; 1; 2g on the interval ½0; 1� subject to periodic boundary conditions on a

uniform grid of size M ¼ f20; 40; 80; 100g

Convergence orders of schemes Sp
mðrÞ

p 2 3 4 5 6 7 8 9

Sp
0 ð0:9Þ and Sp

0ð1:1Þ
Strongly consistent d 2 d 4 d 6 d 8

Strongly u-consistent d 2 d 4 d 6 d 8

Sp
1 ð0:9Þ and Sp

1ð1:1Þ
Strongly consistent 2 d d d d d d d

Strongly u-consistent 2 d 4 d 6 d 8 d

Sp
2 ð0:9Þ and Sp

2ð1:1Þ
Strongly consistent d d d d d d d d

Strongly u-consistent d 2 d 4 d 6 d 8

The exact solutions tested are sinð2pðx� tÞÞ, sinð4pðx� tÞÞ, and sinð6pðx� tÞÞ. The scheme Sp
mðrÞ uses the time step Dt ¼ rDx and a

piecewise polynomial approximation to the solution of degree p, using the nearest p þ 1þ m data points. With the exceptions of S2
1ð0:9Þ

and S2
1 ð1:1Þ, the non-interpolatory (m 6¼ 0) strongly consistent schemes are unstable. Enforcing strong u-consistency stabilized those

schemes with symmetric stencils, i.e., those with p þ 1þ m even.
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in the presence of irregular cells of size E ¼ fDx; 0:1Dx; 10�6Dxg. The results are summarized in Table 4. The

schemes S6
f1;lgð1:1Þ, S8

f2;lgð1:1Þ, and S9
f3;lgð1:1Þ are stable only when l ¼ 1. The numerical domain of de-

pendence grows as one goes down the table, and it is perhaps not surprising that more schemes become

stable. The eigenvalues of the strongly consistent and the strongly u-consistent S4
1ð1Þ schemes are shown in

Fig. 5.

Table 3

Numerical convergence of strongly u-consistent schemes Sp
fm;lgðrÞ, m ¼ f0; 1; 2; 3g, r ¼ f0:9; 1:0; 1:1g for the wave equation on the

interval ½0; 1� subject to periodic boundary conditions on a grid of size M ¼ f20; 40; 80; 100g with an irregular cell of size

E ¼ f1:0Dx; 0:1Dx; 10�6Dxg

Convergence of strongly u-consistent schemes Sp
fm;lgðrÞ

p 2 3 4 5 6 7 8 9

Sp
f0;1g
Dt ¼ 1:0Dx 3 3 5 5 7 7 9 9

Dt ¼ f0:9; 1:1gDx d 2 d d d d d d

Sp
f1;1g
Dt ¼ 1:0Dx 2 d 4 d 6 d 8 8

Dt ¼ f0:9; 1:1gDx 2 d 4 d 6 d 8 d

Sp
f2;0g
Dt ¼ 1:0Dx d 2 d 4 d 6 d d

Dt ¼ f0:9; 1:1gDx d 2 d 4 d 6 d 8

Sp
f3;0g
Dt ¼ 1:0Dx 2 2 4 4 6 6 8 8

Dt ¼ f0:9; 1:1gDx 2 d,2(*) 4 d 6 d 8 d

The exact solutions tested are sinð2pðx� tÞÞ, sinð4pðx� tÞÞ, and sinð6pðx� tÞÞ. The scheme Sp
fm;lgðrÞ is the same as Sp

mðrÞ except l
extra points are added to solve the local approximation/interpolation problem near the small cell. A scheme is called stable (denoted by

a convergence order) if it is stable for all three irregular cell sizes. A scheme is called unstable (denoted by �d�) if it is unstable for any of
the three irregular cell sizes. The entry marked by * in the last row of the table is meant to indicate that S3

f3;0gð0:9Þ is unstable whereas
S3
f3;0gð1:1Þ is second-order accurate.

Fig. 4. Eigenvalues of the evolution matrix of the non-interpolatory S8
1ð1:1Þ and S9

2 ð1:1Þ schemes for the uniform periodic case. The

circles and the stars denote the stable and unstable eigenvalues of the strongly consistent scheme, respectively. The ‘‘�’’s denote the

eigenvalues of the strongly u-consistent scheme, all of which are stable. The unit circle is outlined in dots.
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Table 4

Numerical convergence of the strongly u-consistent schemes Sp
fm;lgðrÞ, m ¼ f0; 1; 2; 3g, r ¼ f0:9; 1:0; 1:1g, and l ¼ f0; 1g while solving

utt ¼ uxx on the interval ½0; 1� subject to Dirichlet boundary conditions on a grid of size M ¼ f20; 40; 80; 100g

Convergence orders of strongly u-consistent schemes Sp
fm;lgðrÞ

p 2 3 4 5 6 7 8 9

Sp
f0;1g
Dt ¼ 1:0Dx d 5 5 7 d d d d

Dt ¼ 0:9Dx 1 3 3 5 d d d d

Dt ¼ 1:1Dx d 3 d d d d d d

Sp
f1;0g and Sp

f1;1g
Dt ¼ 1:0Dx 3 3 5 5 d d d d

Dt ¼ 0:9Dx 3 d 5 d 7 d d d

Dt ¼ 1:1Dx 3 3 5 5 6� d d d

Sp
f2;0g and Sp

f2;1g
Dt ¼ 1:0Dx 1 3 3 5 5 d d d

Dt ¼ 0:9Dx 1 3 3 5 d d d d

Dt ¼ 1:1Dx 1 3 3 5 5 7 7� d

Sp
f3;0g and Sp

f3;1g
Dt ¼ 1:0Dx 3 3 5 5 7 7 d d

Dt ¼ 0:9Dx 3 3 5 5 7 d d d

Dt ¼ 1:1Dx 4 4 5 5 6 7 8 9�

Two irregular cells were introduced near the boundary points of length E ¼ f1:0Dx; 0:1Dx; 10�6Dxg. The exact solutions tested are

left and right moving sine waves, polynomials, and exponentials. A scheme is called stable (denoted by a convergence order) if it is

stable for all three irregular cell sizes. A scheme is called unstable (denoted by �d�) if it is unstable for any of the three irregular cell sizes.
Some entries are marked by a *; for these, only the schemes with l ¼ 1 are stable, the schemes with l ¼ 0 are unstable.

Fig. 5. Eigenvalues of the evolution matrix of the S4
1 ð1:0Þ schemes on a grid with two small cells near the boundary of size 10�6Dx

subject to Dirichlet boundary conditions. The circles and the stars denote the stable and unstable eigenvalues of the strongly consistent

scheme, respectively. The ‘‘�’’s denote the eigenvalues of the strongly u-consistent scheme, all of which are stable. The unit circle is

outlined in dots.
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7.3. Multiple wave speeds

We solve utt ¼ uxx, x < 0, utt ¼ ð0:5Þ2uxx, x > 0 on the interval ½�1; 1� with Dirichlet boundary conditions

and show numerical results. In Tables 5 and 6 the exact solution tested is obtained by letting

u1ðx; tÞ ¼ �1:8 cosð3pðx� tÞÞ and u2ðx; tÞ ¼ 0:2 sinð2pðxþ 0:5tÞÞ according to (18). The grid has uniform

spacing away from the boundary, Dx1 ¼ Dt=r1 to the left of the interface and Dx2 ¼ Dt=r2 to the right of the

interface. Two irregular cells were introduced near the boundaries of length E ¼ f1:0Dx; 0:1Dx; 10�6Dxg.
Stability is determined numerically by looking at the spectral radius of the evolution matrix.

In Table 5, Dx1 ¼ Dt;Dx2 ¼ Dt and fourth order accurate schemes can be obtained in the strongly

u-consistent case.

Table 5

Numerical convergence of schemes Sp
fm;lgðr1; r2Þ while solving utt ¼ uxx, x < 0, utt ¼ ð0:5Þ2uxx, x > 0 on the interval ½�1; 1� subject to

Dirichlet boundary conditions on a grid of size M ¼ f30; 60; 120; 200g with two irregular cells near the boundary of size

E ¼ fDx; 0:1Dx; 10�6Dxg

Convergence orders of schemes Sp
mðrÞ

p 2 3 4 5 6 7 8

Sp
f0;1gð1; 1Þ
Strongly consistent d 2 d d d d d

Strongly u-consistent d 2 3 4 d d d

Sp
f1;0gð1; 1Þ
Strongly consistent d d d d d d d

Strongly u-consistent 2 2 4 4 d d d

Sp
f2;0gð1; 1Þ
Strongly consistent d d d d d d d

Strongly u-consistent s 2 3 4 d d d

Here, Dx1 ¼ Dx2 ¼ Dt: A scheme is called stable (denoted by a convergence order) if it is stable for all three irregular cell sizes. A

scheme is called unstable (denoted by �d�) if it is unstable for any of the three irregular cell sizes.

Table 6

Numerical convergence of schemes Sp
fm;lgðr1; r2Þ while solving utt ¼ uxx, x < 0, utt ¼ ð0:5Þ2uxx, x > 0 on the interval ½�1; 1� subject to

Dirichlet boundary conditions on a grid of size M ¼ f30; 60; 120; 200g with two irregular cells near the boundary of size

E ¼ fDx; 0:1Dx; 10�6Dxg

Convergence orders of schemes Sp
mðrÞ

p 2 3 4 5 6 7 8

Sp
f0;1gð1; 2Þ
Strongly consistent d 2 d d d d d

Strongly u-consistent d 4 5 6 d d d

Sp
f1;0gð1; 2Þ
Strongly consistent d d d d d d d

Strongly u-consistent 2 2 4 4 d d d

Sp
f2;0gð1; 2Þ
Strongly consistent d d d d d d d

Strongly u-consistent 1 2 3 4 5 d d

Here, Dx1 ¼ Dt and Dx2 ¼ 0:5Dt. A scheme is called stable (denoted by a convergence order) if it is stable for all three irregular cell

sizes. A scheme is called unstable (denoted by �d�) if it is unstable for any of the three irregular cell sizes.
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In Table 6, Dx1 ¼ Dt;Dx2 ¼ 0:5Dt and sixth-order accurate schemes are available in the strongly u-
consistent case.

In Fig. 6(a) we let u1ðx; tÞ ¼ 1:0e�ð10ðx�tþ0:6ÞÞ2 , a right moving Gaussian initially centered at �0:6, and let

u2ðx; tÞ ¼ 0 according to (18). In Fig. 6(b) we let u1ðx; tÞ ¼ 1:0e�ð10ðx�tþ0:6ÞÞ2 and let u2ðx; tÞ ¼
�0:7e�ð10ðxþ0:5t�0:8ÞÞ2 , a left moving Gaussian initially centered at 0.8. We imposed homogeneous Dirichlet

boundary conditions, uð�1; tÞ ¼ 0; uð1; tÞ ¼ 0, which are satisfied by the initial data with an exponentially

small error. The scheme we used is the strongly u-consistent S5
f0;1gð1; 1Þ, which is fourth-order accurate. The

grid size is 160 and there are two cells near of the boundary of size 10�6Dx. In both figures, one can see

waves being reflected and transmitted at the interface.

8. Conclusions

We have implemented an integral evolution formula for the wave equation and introduced the notion of

strongly u-consistent evolution schemes. A strongly u-consistent scheme is one which treats the approxi-

mation to the solution as a single-valued function at each time step. The schemes obtained in this way have

high order accuracy and many appear to be stable and robust in the presence of small cells, allowing time

steps to be determined according to the uniform spatial grid spacing. We conjecture that a direct proof of

convergence is possible.

The work involved in strongly u-consistent schemes is essentially the same as that for any other explicit
marching scheme. The cost per time step is OðMKÞ, where K is the number of grid points in the numerical

domain of dependence and M is the number of grid points.

Higher dimensional analysis will be reported at a later date. Preliminary experiments with fourth-order

accurate stencils on a square domain with irregular meshes appear promising, but are technically more

involved. Strong u-consistency, for example, involves Dirac d-functions distributed on line segments which

form the boundaries of two-dimensional cells.

Fig. 6. Solution of utt ¼ uxx, x < 0, utt ¼ ð0:5Þ2uxx, x > 0 on the interval ½�1; 1� subject to homogeneous Dirichlet boundary conditions,

uð�1; tÞ ¼ 0; uð1; tÞ ¼ 0, on a grid of size 160 with two small cells near the boundary of size 10�6Dx. The numerical scheme is the

strongly u-consistent S5
f0;1gð1; 1Þ, which is fourth-order accurate. The spatial discretization is Dx1 ¼ Dt to the left of x ¼ 0 and Dx2 ¼ Dt

to the right of x ¼ 0. The initial data consist of Gaussians. Note waves being reflected and transmitted at the interface. (a) One initially

right miving Gaussian. (b) One initially right and one initially left moving Gaussian.
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